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ABSTRACT 

We study a characteristic condition of Einstein-Rander’s metrics, we prove that a non-Riemannian Rander’s metric 

� = � + � is Einstein metric. By using the data (h, W), it is proved that an n-dimensional (n≥2) Rander’s metric � = � + � 

is having projective changes between a Finsler space with��, �	-metric and the associated Riemannian metric.  
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1. INTRODUCTION 

In this paper, we study �
 be n-dimensional Finsler space equipped with metric function ���, 	.	In the geometry of 

Finsler spaces, let F be a Finsler metric. F is called as Einstien scalar � if  

 	��� = ���	1.1 

where	� = ���	 is a scalar function on M. F is said to be Ricci constant if F satisfies the above condition 

where � = �����. 
Recently some results have been drawn on Finsler-Einstein metrics of ��, �	 type. The ��, �	-metrics form aclass 

of Finsler metrics appearing in Physics, Biology, Control Theory, etc. D. Bao and C. Robles derived Einstein Randers 

metric of dimension ��≥ 	3	. A3-dimensional Randers metric is Einstein if and only if it is of constant flag curvature.For 

every non-Randers ��, �	-metric �	 = 	����	, �	 = 	�/	�. 

In this paper it is investigated Einstein Rander’s metrics �	 = � + �, for which were stricted the consideration to 

the domain where �	 = 	 ����	� > 	0. By using a computation, we obtain the characteristic conditions of Einstein Rander’s 

metrics in Theorem 1.1, which generalize the result. 

An ��, �	-metric, if !�" 	= 	0 the metric is called Killing form.	�is said to be a constant Killing form if it is a 

Killing form and it satisfies the condition!�" 	= 	0, �� 	= 	0. 

For ��, �	-metrics with constant Killing form, Einstein Kropina metrics, we have the following theorem. 

Theorem 1.1: Let �	 = � + � be a Rander’s metric with Killing form β on an n-dimensional manifold M,	�	 ≥ 	2. In this 

case, �	 = $
% &�� 	≥ 	0, where &	 = 	&��	 is the Einstein scalar of α. F is Ricci constant when n ≥ 3. 
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Rander’s Metric using Ricci Curvature  

If � is a Finsler metric on an n-dimensional manifold, defined by 

.'� ≔ $
%)�*{,��-./012 − ,��-.1} 

For any �	 ∈ 	6, 	 ∈ 7.6{0}, the Riemann curvature �0 ∶= 	�	2�
9
9.: ⊗<�2 is defined by	�	2� ≔ 2 9=:

9.1 −
9>=:

9.?901 
 + 2'
 9>=:
90?901 − 9=:

90?
9=?
901  

 ��� ∶= 	�

. By definition, an ��, �	-metric on 6	��	in the form = 	�@��	, �	 = A
B, where�	 = CD�"��	�" is a 

Riemannian metric, �	 = 	 ����	� a 1-form. It is known that ��, �	-metric withE|�.|EB < �His a Finsler metric if and only 

if @	 = 	@��	 is a positive smoothfunction in an open interval �−�H, �H	 satisfies the following condition: 

@��	 − 	�@ ′��	 +	��2	 − 	�2	@ ′′��	 > 	0, ∀|�| ≤ 	�	 < �H, see [7].Let!�" 	= $
� K�2|* 	+ 	�*|2L, ��M	 = $

� K�2|* 	+ 	�*|2L,	where 

"|”  denotes the covariant derivative with respect to the Levi-Civita connection of �.Denote!	"� ∶= 	 D�2!2"	, !" ∶= 	 ��!�" , ! ∶=
	!�"���" 	= 	 �"!" , �	"� ∶= 	 D�2�2"	, �" ∶= 	 ����" ,	where�D�"	 ∶= 	 �D�"	O$and �� ∶= D�"�". Denote !� ∶= 	 D�"!",�� ∶= 	 D�"�", 
!�H ∶= 	 !�"", ��H ∶= 	 ��"",!HH ∶= 	 !�"�", !H ∶= 	 !�� and �H ∶= 	 ���.If '� is the geodesic coefficient of F and '̅� is the 

geodesic coefficients of �. Then we prove the following lemma. 

Lemma 1.1:  

For an ��, �	-metric = 	�@��	, �	 = 	AB, the geodesic coefficients '� are given by'� = '̅� + �Q�	H� + R�!HH − 2�Q�H	�� +
$
BΘ�!HH − 2�Q�H	� (1.2)where Q ≔ S′

SOTS′ = 1,R ≔ S′′
�USOTS′V�W>OT>	S′′X = 0, 

Θ≔ @@ ′ − ��@@ ′′ + @ ′@ ′	
2@,@ − �@ ′ + ��� − ��	@ ′′- =

1
2�1 + �	 

We consider a special ��, �	-metrics which is called Rander’s-metric with the form�	 = 	�@��	, @��	: = 	 �O$, 

�	 = B
A 

We get the Ricci curvature of Rander’s metric by using Lemma 1.1. 
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