

ON EINSTEIN-RANDER'S METRIC

Gayathri K

Department of Mathematics, Reva University, Bengaluru, Karnataka, India

Received: 10 Jul 2019

Accepted: 17 Jul 2019

Published: 31 Jul 2019

ABSTRACT

We study a characteristic condition of Einstein-Rander's metrics, we prove that a non-Riemannian Rander's metric $F = \alpha + \beta$ is Einstein metric. By using the data (h, W), it is proved that an n-dimensional ($n \ge 2$) Rander's metric $F = \alpha + \beta$ is having projective changes between a Finsler space with (α, β) -metric and the associated Riemannian metric.

Mathematics Subject Classification (2010): 53A20, 53B40, 53C60, 58J60.

KEYWORDS: Finsler Space, Rander's Metric, Navigation Data

1. INTRODUCTION

In this paper, we study F^n be n-dimensional Finsler space equipped with metric function L(x, y). In the geometry of Finsler spaces, let F be a Finsler metric. F is called as Einstien scalar σ if

 $Ric = \sigma F^2 1.1$

where $\sigma = \sigma(x)$ is a scalar function on M. F is said to be Ricci constant if F satisfies the above condition

where
$$\sigma = const$$
.

Recently some results have been drawn on Finsler-Einstein metrics of (α, β) type. The (α, β) -metrics form aclass of Finsler metrics appearing in Physics, Biology, Control Theory, etc. D. Bao and C. Robles derived Einstein Randers metric of dimension $n \geq 3$. A3-dimensional Randers metric is Einstein if and only if it is of constant flag curvature.For every non-Randers (α, β) -metric $F = \alpha \varphi(s)$, $s = \alpha / \beta$.

In this paper it is investigated Einstein Rander's metrics $F = \alpha + \beta$, for which were stricted the consideration to the domain where $\beta = b_i(x)y^i > 0$. By using a computation, we obtain the characteristic conditions of Einstein Rander's metrics in Theorem 1.1, which generalize the result.

An (α, β) -metric, if $r_{ij} = 0$ the metric is called Killing form. β is said to be a constant Killing form if it is a Killing form and it satisfies the condition $r_{ij} = 0$, $s_i = 0$.

For (α, β) -metrics with constant Killing form, Einstein Kropina metrics, we have the following theorem.

Theorem 1.1: Let $F = \alpha + \beta$ be a Rander's metric with Killing form β on an n-dimensional manifold M, $n \ge 2$. In this case, $\sigma = \frac{1}{4}\lambda b^2 \ge 0$, where $\lambda = \lambda(x)$ is the Einstein scalar of α . F is Ricci constant when $n \ge 3$.

Rander's Metric using Ricci Curvature

If F is a Finsler metric on an n-dimensional manifold, defined by

$$G^{i} \coloneqq \frac{1}{4}g^{il}\left\{\left[F^{2}\right]_{x^{k}y^{l}}y^{k} - \left[F^{2}\right]_{x^{l}}\right\}$$

For any $x \in M$, $y \in T_x M\{0\}$, the Riemann curvature $R_y := R_k^i \frac{\partial}{\partial x^i} \otimes dx^k$ is defined by $R_k^i \coloneqq 2 \frac{\partial G^i}{\partial x^i} - \frac{\partial^2 G^i}{\partial x^n \partial y^l} y^n + 2G^n \frac{\partial^2 G^i}{\partial y^n \partial y^l} - \frac{\partial G^i}{\partial y^n} \frac{\partial G^n}{\partial y^l}$

Ric := R_n^n . By definition, an (α, β) -metric on *M* is in the form = $\alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, where $\alpha = \sqrt{a_{ij}(x)y^i y^j}$ is a Riemannian metric, $\beta = b_i(x)y^i$ a 1-form. It is known that (α, β) -metric with $||\beta_x||_{\alpha} < b_0$ is a Finsler metric if and only if $\phi = \phi(s)$ is a positive smoothfunction in an open interval $(-b_0, b_0)$ satisfies the following condition: $\phi(s) - s\phi'(s) + (b2 - s2)\phi''(s) > 0, \forall |s| \le b < b_0$, see [7].Let $r_{ij} = \frac{1}{2}(b_{k|l} + b_{l|k})$, $sij = \frac{1}{2}(b_{k|l} + b_{l|k})$, where "|" denotes the covariant derivative with respect to the Levi-Civita connection of α .Denoter $_j^i := a^{ik}r_{kj}$, $r_j := b^i r_{ij}$, $r := r_{ij}b^ib^j = b^j r_j$, $s_j^i := a^{ik}s_{kj}$, $s_j := b^i s_{ij}$, where $(a^{ij}) := (a_{ij})^{-1}$ and $b^i := a^{ij}b_j$. Denote $r^i := a^{ij}r_j$, $s^i := a^{ij}s_j$, $r_{i0} := r_{ij}y^j$, $s_{i0} := s_{ij}y^j$, $r_{00} := r_{ij}y^iy^j$, $r_0 := r_iy^i$ and $s_0 := s_iy^i$. If G^i is the geodesic coefficient of F and \overline{G}^i is the geodesic coefficients of α . Then we prove the following lemma.

Lemma 1.1:

For an (α, β) -metric = $\alpha \phi(s)$, $s = \frac{\beta}{\alpha}$, the geodesic coefficients G^i are given by $G^i = \overline{G}^i + \alpha Q s_0^i + \psi(r_{00} - 2\alpha Q s_0) b^i + \frac{1}{\alpha} \Theta(r_{00} - 2\alpha Q s_0) y^i$ (1.2)where $Q \coloneqq \frac{\phi'}{\phi - s\phi'} = 1$, $\psi \coloneqq \frac{\phi''}{2[\phi - s\phi' + (b^2 - s^2)\phi'']} = 0$,

$$\Theta \coloneqq \frac{\phi \phi' - s(\phi \phi'' + \phi' \phi')}{2\phi [\phi - s\phi' + (b^2 - s^2)\phi'']} = \frac{1}{2(1+s)}$$

We consider a special (α, β) -metrics which is called Rander's-metric with the form $F = \alpha \phi(s), \phi(s) = s^{-1},$ $s = \frac{\alpha}{\beta}$

We get the Ricci curvature of Rander's metric by using Lemma 1.1.

REFERENCES

- 1. P. L. Antonelli, A. B´ona, M. A. Slawi´nski, Seismic rays as Finsler geodesics, Nonlinear Anal, RWA, 4 (2003), 711C722.
- 2. G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel Pubishing Company, Dordrecht, Holland, 1985.
- 3. D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in "A Sampler of Finsler Geometry".
- 4. D. Bao, C. Robles and Z. Shen., Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66(2004), 391–449.
- S. B'acs'o, X. Cheng and Z. Shen., Curvature properties of (α, β)-metrics, Advanced Studies in Pure Mathematics, Math. Soc. of Japan, 48 (2007), 73–110.

- 6. X. Cheng, Z. Shen and Y. Tian, A Class of Einstein (α, β) -metrics, Israel Journal of Mathematics, accepted.
- 7. S. S. Chern and Z. Shen., Riemann-Finsler geometry, World Scientific, Singapore, 2005.
- 8. V. K. Kropina, on projective two-dimensional Finsler spaces with a special metric, Trudy Sem. Vektor. Tenzor. Anal., 11(1961), 277–292.(in Russian)
- 9. B. Li. and Z. Shen., On a Class of Projectively Flat Finsler Metrics with Constant Flag Curvature, Intern. J. of Math., 18 (2007), 1–12.
- 10. M. Rafie-Rad, Time-optimal solutions of parallel navigation and Finsler geodesics, Nonlinear Anal, RWA, 11(2010), 3809C3814.
- B. Rezaei, A. Razavi and N. Sadeghzadeh, ON EINSTEIN (α, β)-METRICS*, Iranian J. of Scie. Tech., Tran.A. 31, No. A4, Printed in The Islamic Republic of Iran, 2007.
- 12. Y. B. Shen., General Solutions of Some Differential Equations on Riemannian Manifolds, Journal of Mathematical Research with Applications, (1982), No. 2, 55-60. (in Chinese)
- 13. T. Yajima, H. Nagahama, Zermelos condition and seismic ray path, Nonlinear Anal. RWA, 8(2007), 130C135.
- 14. R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature, Tensor, N.S., 68(2007), 190-203.
- 15. R. Yoshikawa and K. Okubo, Kropina spaces of constant curvature II, arXiv:math/1110.5128v1 [math.DG]24 Oct 2011.
- L. Zhou, A local classification of a class of (α, β)-metrics with constant flag curvature, Diff. geom. and its Appl., 28(2010), 170-193.
- 17. I.Y. Lee and H.S. Park, Finsler spaces with an infinite series (α , β)-metric, J.Ko-rean Math. Soc. 41 (2004), No. 3, 567-589.
- 18. Il-Yong Lee, Ha-Yong Park and Yong-DukLee, On a hypersurface of a special Finsler space whihametrica+ μ^{β^2} , KoreanJ. Math. Sciences, 8(1)(2001),93-101.
- 19. Xin Liand Zhe Chang, Symmetry and special relativity in Finsler space time with constant curvature, ar Xiv:grqc/1010.2020v2.
- 20. Xin Li and Zhe Chang, Towardsa gravitation theory in Berwald-Finslerspace,
- 21. Chinese Physics C, 34(2010), 28-34.
- 22. Xin Li, Zhe Chang and Xiaohuan Mo, Symmetries in very special relativity and isometric group of Finsler space, Chinese Physics C, 33(2009),1-5.
- L. Zhou, Alocal Classification of a Class of (α, β) –metrics with constant flag curva- ture, J. Differential Geom. Appl., 28(2010), 179-193.